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Executive summary

The study of essentially free pmp actions  of lcsc groups is 
equivalent to the study of invariant point processes on .

This is due to a fundamental relationship between weakly lacunary sections 
and point processes. I will explain this equivalence.

In particular, we can exploit this relationship to give the first new technique 
to compute cost in the nondiscrete case, for  and other groups.

G ↷ (X, μ)
G

G × ℤ



Setup

Throughout,  will be a locally compact second countable (lcsc) group.

We will mostly assume  is nondiscrete, noncompact, and unimodular.

Once a Haar measure  on  is fixed, it is possible to define the cost of 
essentially free pmp actions  on standard Borel spaces by using 
lacunary sections.

G

G

λ G
G ↷ (X, μ)



Lacunary section review
Let  be a Borel action on a standard Borel space.

A lacunary section is a Borel subset  which meets every orbit, and such that there exists an 
identity neighbourhood  such that  for all .

Fact: lacunary sections always exist. (See Kechris for most general statement + history)

This implies  is countable, so the orbit equivalence relation of  restricts to a countable 
Borel equivalence relation  (cber) on .

If there is a -invariant probability measure  on  for which the action  is essentially free, 
then there is a probability measure  on  such that  is a quasi-pmp cber (and pmp if  is 
unimodular). Sometimes called a cross-section equivalence relation.

You can define  to be  (normalised by its intensity).

G ↷ X

Y ⊂ X
U ⊆ G Uy ∩ Y = {y} y ∈ Y

Gy ∩ Y G ↷ X
ℛY Y

G μ X G ↷ (X, μ)
μY Y (Y, ℛY, μY) G

cost(G ↷ (X, μ)) cost(Y, ℛY, μY)



The configuration space action G ↷ 𝕄
Let , 
where “locally finite” is with reference to a left-
invariant proper metric on 

There is a natural shift action 

We equip  with the smallest -algebra that 
makes the following point counting functions 
measurable: for  Borel, define

𝕄 = {ω ⊂ G ∣ ω is locally finite} ⊂ 2G

G

G ↷ 𝕄

𝕄 σ

U ⊆ G

{ NU : 𝕄 → ℕ0 ∪ {∞}
NU(ω) = |ω ∩ U |

U

Proper means closed balls are compactProper means closed balls are compact



A lacunary section for ?G ↷ 𝕄
Recall: 

The rooted configuration space is , where  denotes the identity element.

Observe that if , then , and so . So , and  meets essentially 
every orbit of .

This calculation also shows that .

In particular, if  is any bounded identity neighbourhood, then  is always finite for any 
.

Thus  is a “weakly lacunary” section for . This is the only kind of example that exists.

For “point process actions”, weakly lacunary is the natural notion, not lacunary.

𝕄 = {ω ⊂ G ∣ ω is locally finite}

𝕄0 = {ω ∈ 𝕄 ∣ 0 ∈ ω} 0 ∈ G

g ∈ ω 0 ∈ g−1ω g−1ω ∈ 𝕄0 G𝕄0 = 𝕄∖{Ø} 𝕄0
G ↷ 𝕄

Uω ∩ 𝕄0 = {u−1ω ∣ u ∈ ω ∩ U}

U Uω ∩ 𝕄0

ω ∈ 𝕄0

𝕄0 G ↷ 𝕄



Point process actions

A point process on  is a probability measure  on .

That is, a random discrete subset of . 

It is invariant if it is an invariant measure for the action .

Speaking more properly, a point process is a random element . I will try 
avoid this random element terminology.

G μ 𝕄

G

G ↷ 𝕄

Π ∈ 𝕄



Point process examples
• Lattice shifts. If  is a lattice, then view  as a subset of 

• The Poisson point process. It is the nondiscrete analogue of Bernoulli 
percolation  on 

• Every lacunary section  of a free pmp action  naturally 
induces an “orbit viewing factor map”  (next slide), and the push 
forward measure  is an invariant point process

Fact: Every free pmp action is isomorphic to a point process. (More generally, 
nonfree actions are some kind of “bundle of point processes”)

Γ < G G/Γ 𝕄

𝙱𝚎𝚛(p) = (pδ1 + qδ0)⊗Γ {0,1}Γ

Y ⊂ X G ↷ (X, μ)
V : X → 𝕄

V*μ



Visualising lacunary sections
Fix a lacunary section  for a free action .

We identify each orbit  with  via .

We study orbit intersections  under this identification. Formally, define the orbit viewing map 
 by

 (the inverse makes it equivariant)

By the lacunary property,  takes values in .

Observe that : since  iff .

In short: a choice of lacunary section induces a factor map , and we recover the lacunary 
section as the pre-image of the canonical section .

Y ⊂ X G ↷ X

Gx G g ↦ gx

Gx ∩ Y
V : X → 2G

V(x) := {g ∈ G ∣ g−1x ∈ Y}

V 𝕄 = {ω ⊂ G ∣ ω is locally finite}

Y = V−1(𝕄0) 0 ∈ V(x) x ∈ Y

X → 𝕄
𝕄0



Current state

• A choice of lacunary section  for a free action  induces a 
factor map  and hence an invariant point process 

• With some work, you can construct a Borel injection , and hence 
 and  are isomorphic actions

For this reason, I will now speak just of point process actions.

Y ⊂ X G ↷ (X, μ)
V : X → 𝕄 V*μ

𝒱 : X → 𝕄
G ↷ (X, μ) G ↷ (𝕄, 𝒱*μ)



The Palm equivalence relation
If  is an invariant point process “of finite intensity”, then there is a natural measure  on the 
weakly lacunary section  such that  is a quasi-pmp cber (and pmp if G is 
unimodular), where  is the orbit equivalence relation of .

The measure  comes from probability theory and is known as the Palm measure and we call 
 the Palm equivalence relation of . 

It admits a reasonably simple algebraic definition, but I will use Palm-free definitions for interests 
of time.

If you are familiar with cross-section equivalence relations, it’s the same thing (more elegant imo)

To define cost I must explain the intensity of a point process, what a graphing of a point process is, 
and how to measure the size of a graphing.

μ μ0
𝕄0 (𝕄0, ℛ | 𝕄0

, μ0)
ℛ G ↷ 𝕄

μ0
(𝕄0, ℛ | 𝕄0

, μ0) μ



Intensity of an invariant point process G ↷ (𝕄, μ)

Recall that for  the function  is measurable.

Fix  with , and define 

Because  is invariant, the function  defines a right invariant Haar measure on 

, which shows that the intensity is well-defined. It scales linearly with the choice of Haar measure.

Examples
• A process has zero intensity if and only if it is trivial (that is, )

• The intensity of a lattice shift  is 

U ⊆ G { NU : 𝕄 → ℕ0 ∪ {∞}
NU(ω) = |ω ∩ U |

U ⊆ G 0 < λ(U) < ∞ intensity(μ) :=
1

λ(U) ∫𝕄
ω ∩ U dμ(ω) =

𝔼μ [NU]
λ(U)

μ U ↦ ∫𝕄
ω ∩ U dμ(ω)

G

μ = δØ

G ↷ G/Γ 1/covol(Γ)



Factor graphs: the analogue of graphings

The distance-R factor graph on  has 
vertex set  and edge set

Note that it is deterministic given the input

It’s equivariantly defined: 

(we use a metric which is left-invariant)

ω ∈ 𝕄
ω

𝒟R(ω) = {(g, h) ∈ ω × ω ∣ d(g, h) < R}

𝒟R(gω) = g𝒟R(ω)

𝒟R(ω)



Factor graphs, formally

Let  denote the space of abstractly embedded graphs in . Formally,

It is a -space in its own right. A (Borel) factor graph is a measurable and 
equivariant map  such that the vertex set of  is .

Graph(G) G

Graph(G) = {(V, E) ∈ 𝕄(G) × 𝕄(G × G) ∣ E ⊆ V × V and E = E−1}

G
𝒢 : 𝕄(G) → Graph(G) 𝒢(ω) ω



The average degree of a factor graph

Let  be an invariant point process and  a 
factor graph. The average degree of  (with 
respect to  is

where  is any set of unit volume.

μ 𝒢
𝒢

μ)

μ0(𝒢) =
1
2 ∫𝕄

∑
g∈U∩ω

deg𝒢(ω)(g)dμ(ω) =
1
2

𝔼 ∑
g∈U∩ω

deg𝒢(ω)(g)

U ⊆ G

U



Cost
The cost of an invariant point process  is defined by

where the infimum ranges over all connected factor graphs 

It’s not immediately apparent from the above formula, but  scales with the 
choice of Haar measure 

For lattice shifts, , where  denotes the rank of  

(minimum size of a generating set)

μ

cost(μ) − 1 = inf
𝒢 [μ0(𝒢) − intensity(μ)]

𝒢

(cost − 1)
λ

cost(G ↷ G/Γ) − 1 =
d(Γ) − 1
covol(Γ)

d(Γ) Γ



Cost vs. factors

If  is a factor map and  is a point process, then 

In particular, the cost is an isomorphism invariant (can show it’s an OE 
invariant in an appropriate sense)

This follows from Gaboriau’s induction formula for cost (you can also prove 
it directly)

Φ : 𝕄 → 𝕄 μ
cost(μ) ≤ cost(Φ*μ)



Factor of IID cost
I stress that factor graphs should be deterministically defined.

A (perhaps less well-known?) fact is that, as far as computing the cost is concerned, you’re allowed 
to add factor of IID randomness.

Discrete example [Tucker-Drob]
If  is a free pmp action and  is the Bernoulli shift, then  is weakly equivalent 
to . In particular, . That is, the cost of a free action is equal to the 
cost of its Bernoulli extension.

This should be true for any pmp cber (Abért-M. prove it for point processes). 

If  is any free point process, then it has the same cost as its Bernoulli extension 

Corollary: the Poisson point process has maximal cost (since it’s a factor of any Bernoulli extension)

Γ ↷α (X, μ) Γ ↷β [0,1]Γ α
α × β cost(X, μ) = cost(X × [0,1]Γ)

μ [0,1]μ



Bernoulli extensions
If  is a pmp cber, then it admits a class bijective Bernoulli extension 

Formally:

•  consists of pairs  where  and  is a labelling of its equivalence 
class

• We declare  if  and 

• For , we set , where 

Informally
It’s  but every point  has IID  labels on the points of its equivalence class

(X, ℛ, μ) ( X̃ , ℛ̃, μ̃ ) → (X, ℛ, μ)

X̃ (x, f ) x ∈ X f : [x]ℛ → [0,1]

(x, f )ℛ̃(x′ , f′ ) xℛx′ f = f′ 

A ⊆ X̃ μ̃(A) = ∫X
ηx(A)dμ(x) ηx = 𝙻𝚎𝚋[x]ℛ

X x ∈ X 𝚄𝚗𝚒𝚏[0,1]



IID markings of point processes

In general, every class bijective extension  of a lacunary 
section arises as a lacunary section of an extension 

In particular, every point process  has a Bernoulli extension or IID marking, 
which I will denote by .

(Ỹ, ℛ̃, μ̃Y) → (Y, ℛ, μY)
G ↷ ( X̃ , μ) → G ↷ (X, μ)

μ
[0,1]μ



…then each point independently tosses a coin heads or tails

⇝

First sample the process…

Informal example:{H, T}-IID of a point process μ



…then each point independently tosses a coin heads or tails

⇝

First sample the process…

Informal example:{H, T}-IID of a point process μ



The -configuration space action Ξ G ↷ Ξ𝕄

Let  denote a complete separable metric space of marks (think of  or ).

A -marked configuration is a discrete subset  of  where every point is labelled by an 
element of . Formally, let

A -marked point process is a probability measure on .

If  is a point process on , then its Bernoulli extension is a -marked point process 
denoted  which arises as the Bernoulli extension of the Palm equivalence relation 

Informally: sample from , then at each point put an IID  number. 

Ξ {𝙷𝚎𝚊𝚍𝚜, 𝚃𝚊𝚒𝚕𝚜} [0,1]

Ξ ω G
Ξ

Ξ𝕄 = {ω ∈ 𝕄(G × Ξ) ∣  if (g, ξ) ∈ ω and (g, ξ′ ) ∈ ω then ξ = ξ′ }

Ξ Ξ𝕄

μ G [0,1]
[0,1]μ

(𝕄0, ℛ | 𝕄0
, μ0)

μ 𝚄𝚗𝚒𝚏[0,1]



 has fixed price oneG × ℤ

Visualise  as an infinite stack of 
pancakes (or palacsinták, or crêpes, as 
you prefer)

G × ℤ

G × ℤ



At least some processes have cost one…

↪

{Δ : 𝕄(G) → 𝕄(G × ℤ)
Δ(Π) = Π × ℤ

If  is any process on , then  has cost oneμ G [0,1]Δ*μ

Vertical processes



The cost of Bernoulli extensions of vertical processes

∪

Vertical edges -Percolate any horizontal graphingε



Fixed price proof outline

• If  is an invariant point process on , then its cost is equal to the cost 
of its Bernoulli extension 

• Any Bernoulli extension  weakly factors onto some vertical process  
(and onto its Bernoulli extension )

• Cost is monotone for (certain) “weak factors”

Thus .

μ G × ℤ
[0,1]μ

[0,1]μ ν
[0,1]ν

cost(μ) = cost([0,1]μ) ≤ cost([0,1]ν) = 1



Weak factoring

A point process  weakly factors onto a process  if there is a sequence of factor 
maps  such that  weakly converges to 

Inspired by weak containment (can probably make this formal)

A sequence of point processes  weakly converges to  if 

for all continuous and bounded functions  with bounded support

μ ν
Φn : 𝕄 → 𝕄 Φn

*(μ) ν

μn μ

lim
n→∞ ∫𝕄

f(ω)dμn(ω) = ∫𝕄
f(ω)dμ(ω)

f : 𝕄 → ℝ≥0



The topology on …𝕄
…is determined by sequences.

A configuration  is an -wobble 
of  if they are bijectively equivalent 
in  by a bijection 

 that 
moves points by at most  — that is, 

A sequence  converges to  if there 
exists  and  such that 

 is an -wobble of 

ω′ (R, ε)
ω
B(0,R)

σ : ω′ ∩ B(0,R) → ω ∩ B(0,R)
ε

d(x, σ(x)) < ε

ωn ω
Rn ↗ ∞ ε ↘ 0

ωn (Rn, εn) ω

< ε

R

ω
ω′ 



Weak factoring onto a vertical process
Recall that  is some process on .

We wish to weakly factor its Bernoulli extension  onto some vertical process.

We take sparser and sparser subsets of  and stretch them. 

I call this propagation.

Formally, for , define

, and

, and

μ G × ℤ

[0,1]μ

μ

ω ∈ [0,1]𝕄(G×ℤ)

ω1/n = {g ∈ ω ∣ ξg < 1/n}

ω + 1 = {(g, l + 1) ∈ G × ℤ ∣ (g, l) ∈ ω}

Φn(ω) = ω1/n ∪ (ω1/n + 1) ∪ ⋯ ∪ (ω1/n + n − 1)



The propagation factor map



The propagation factor map



The propagation factor map



The propagation factor map



Extensions
• Similar argument covers 

• Modification using Følner sets proves groups containing noncompact 
amenable normal subgroups have fixed price one

• Can handle , where  is a f.g. group containing an  order element

Question
Do groups of the form  have fixed price one if  contains an  order 
element generating a discrete subgroup?

Would have interesting ramifications for rank gradient in .

G × ℝ

G × Λ Λ ∞

G × H H ∞

SL2(ℝ) × SL2(ℝ)



Replacements…

There is an effort to replace all this point process theory by ultrapowers.



Replacements…

There is an effort to replace all this point process theory by ultrapowers.
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