Visualising actions, computing cost, and fixed price for $G \times \mathbb{Z}$

Sam Mellick (ENS de Lyon)
some joint work with Miklós Abért (Alfréd Rényi Institute)

samuel.mellick@ens-lyon.fr

Executive summary

The study of essentially free pmp actions $G \curvearrowright(X, \mu)$ of lcsc groups is equivalent to the study of invariant point processes on G.

This is due to a fundamental relationship between weakly lacunary sections and point processes. I will explain this equivalence.

In particular, we can exploit this relationship to give the first new technique to compute cost in the nondiscrete case, for $G \times \mathbb{Z}$ and other groups.

Setup

Throughout, G will be a locally compact second countable (lcsc) group.
We will mostly assume G is nondiscrete, noncompact, and unimodular.
Once a Haar measure λ on G is fixed, it is possible to define the cost of essentially free pmp actions $G \curvearrowright(X, \mu)$ on standard Borel spaces by using lacunary sections.

Lacunary section review

Let $G \curvearrowright X$ be a Borel action on a standard Borel space.
A lacunary section is a Borel subset $Y \subset X$ which meets every orbit, and such that there exists an identity neighbourhood $U \subseteq G$ such that $U y \cap Y=\{y\}$ for all $y \in Y$.

Fact: lacunary sections always exist. (See Kechris for most general statement + history)
This implies $G y \cap Y$ is countable, so the orbit equivalence relation of $G \curvearrowright X$ restricts to a countable Borel equivalence relation \mathscr{R}_{Y} (cber) on Y.

If there is a G-invariant probability measure μ on X for which the action $G \curvearrowright(X, \mu)$ is essentially free, then there is a probability measure μ_{Y} on Y such that $\left(Y, \mathscr{R}_{Y}, \mu_{Y}\right)$ is a quasi-pmp cber (and pmp if G is unimodular). Sometimes called a cross-section equivalence relation.

You can define $\operatorname{cost}(G \curvearrowright(X, \mu))$ to be $\operatorname{cost}\left(Y, \mathscr{R}_{Y}, \mu_{Y}\right)$ (normalised by its intensity).

The configuration space action $G \curvearrowright \mathbb{M}$

Let $\mathbb{M}=\{\omega \subset G \mid \omega$ is locally finite $\} \subset 2^{G}$, where "locally finite" is with reference to a leftinvariant proper metric on G

There is a natural shift action $G \curvearrowright \mathbb{M}$
We equip \mathbb{M} with the smallest σ-algebra that makes the following point counting functions measurable: for $U \subseteq G$ Borel, define

$$
\left\{\begin{array}{l}
N_{U}: \mathbb{M} \rightarrow \mathbb{N}_{0} \cup\{\infty\} \\
N_{U}(\omega)=|\omega \cap U|
\end{array}\right.
$$

A lacunary section for $G \curvearrowright \mathbb{M}$?

Recall: $\mathbb{M}=\{\omega \subset G \mid \omega$ is locally finite $\}$
The rooted configuration space is $\mathbb{M}_{0}=\{\omega \in \mathbb{M} \mid 0 \in \omega\}$, where $0 \in G$ denotes the identity element.
Observe that if $g \in \omega$, then $0 \in g^{-1} \omega$, and so $g^{-1} \omega \in \mathbb{M}_{0}$. So $G \mathbb{M}_{0}=\mathbb{M} \backslash\{\varnothing\}$, and \mathbb{M}_{0} meets essentially every orbit of $G \curvearrowright \mathbb{M}$.

This calculation also shows that $U \omega \cap \mathbb{M}_{0}=\left\{u^{-1} \omega \mid u \in \omega \cap U\right\}$.
In particular, if U is any bounded identity neighbourhood, then $\left|U \omega \cap \mathbb{M}_{0}\right|$ is always finite for any $\omega \in \mathbb{M}_{0}$.

Thus \mathbb{M}_{0} is a "weakly lacunary" section for $G \curvearrowright \mathbb{M}$. This is the only kind of example that exists.
For "point process actions", weakly lacunary is the natural notion, not lacunary.

Point process actions

A point process on G is a probability measure μ on \mathbb{M}.
That is, a random discrete subset of G.

It is invariant if it is an invariant measure for the action $G \curvearrowright \mathbb{M}$.

Speaking more properly, a point process is a random element $\Pi \in \mathbb{M}$. I will try avoid this random element terminology.

Point process examples

- Lattice shifts. If $\Gamma<G$ is a lattice, then view G / Γ as a subset of \mathbb{M}
- The Poisson point process. It is the nondiscrete analogue of Bernoulli percolation $\operatorname{Ber}(p)=\left(p \delta_{1}+q \delta_{0}\right)^{\otimes \Gamma}$ on $\{0,1\}^{\Gamma}$
- Every lacunary section $Y \subset X$ of a free pmp action $G \curvearrowright(X, \mu)$ naturally induces an "orbit viewing factor map" $V: X \rightarrow \mathbb{M}$ (next slide), and the push forward measure $V_{*} \mu$ is an invariant point process

Fact: Every free pmp action is isomorphic to a point process. (More generally, nonfree actions are some kind of "bundle of point processes")

Visualising lacunary sections

Fix a lacunary section $Y \subset X$ for a free action $G \curvearrowright X$.
We identify each orbit $G x$ with G via $g \mapsto g x$.

We study orbit intersections $G x \cap Y$ under this identification. Formally, define the orbit viewing map $V: X \rightarrow 2^{G}$ by
$V(x):=\left\{g \in G \mid g^{-1} x \in Y\right\}$ (the inverse makes it equivariant)
By the lacunary property, V takes values in $\mathbb{M}=\{\omega \subset G \mid \omega$ is locally finite $\}$.
Observe that $Y=V^{-1}\left(\mathbb{M}_{0}\right)$: since $0 \in V(x)$ iff $x \in Y$.

In short: a choice of lacunary section induces a factor map $X \rightarrow \mathbb{M}$, and we recover the lacunary section as the pre-image of the canonical section \mathbb{M}_{0}.

Current state

- A choice of lacunary section $Y \subset X$ for a free action $G \curvearrowright(X, \mu)$ induces a factor map $V: X \rightarrow \mathbb{M}$ and hence an invariant point process $V: \mu$
- With some work, you can construct a Borel injection $\mathscr{V}: X \rightarrow \mathbb{M}$, and hence $G \curvearrowright(X, \mu)$ and $G \curvearrowright(\mathbb{M}, \mathscr{V} * \mu)$ are isomorphic actions

For this reason, I will now speak just of point process actions.

The Palm equivalence relation

If μ is an invariant point process "of finite intensity", then there is a natural measure μ_{0} on the weakly lacunary section \mathbb{M}_{0} such that $\left(\mathbb{M}_{0},\left.\mathscr{R}\right|_{\mathbb{M}_{0}}, \mu_{0}\right)$ is a quasi-pmp cber (and pmp if G is unimodular), where \mathscr{R} is the orbit equivalence relation of $G \curvearrowright \mathbb{M}$.

The measure μ_{0} comes from probability theory and is known as the Palm measure and we call $\left(\mathbb{M}_{0},\left.\mathscr{R}\right|_{M_{0}}, \mu_{0}\right)$ the Palm equivalence relation of μ.

It admits a reasonably simple algebraic definition, but I will use Palm-free definitions for interests of time.

If you are familiar with cross-section equivalence relations, it's the same thing (more elegant imo)
To define cost I must explain the intensity of a point process, what a graphing of a point process is, and how to measure the size of a graphing.

Intensity of an invariant point process $G \curvearrowright(\mathbb{M}, \mu)$

Recall that for $U \subseteq G$ the function $\left\{\begin{array}{l}N_{U}: \mathbb{M} \rightarrow \mathbb{N}_{0} \cup\{\infty\} \\ N_{U}(\omega)=|\omega \cap U|\end{array}\right.$ is measurable.
Fix $U \subseteq G$ with $0<\lambda(U)<\infty$, and define intensity $(\mu):=\frac{1}{\lambda(U)} \int_{\mathbb{M}}|\omega \cap U| d \mu(\omega)=\frac{\mathbb{E}_{\mu}\left[N_{U}\right]}{\lambda(U)}$
Because μ is invariant, the function $U \mapsto \int_{\mathbb{M}}|\omega \cap U| d \mu(\omega)$ defines a right invariant Haar measure on G, which shows that the intensity is well-defined. It scales linearly with the choice of Haar measure.

Examples

- A process has zero intensity if and only if it is trivial (that is, $\mu=\delta_{\varnothing}$)
- The intensity of a lattice shift $G \curvearrowright G / \Gamma$ is $1 / \operatorname{covol}(\Gamma)$

Factor graphs: the analogue of graphings

The distance- R factor graph on $\omega \in \mathbb{M}$ has vertex set ω and edge set

$$
\mathscr{D}_{R}(\omega)=\{(g, h) \in \omega \times \omega \mid d(g, h)<R\}
$$

Note that it is deterministic given the input It's equivariantly defined: $\mathscr{D}_{R}(g \omega)=g \mathscr{D}_{R}(\omega)$ (we use a metric which is left-invariant)

Factor graphs, formally

Let $\operatorname{Graph}(G)$ denote the space of abstractly embedded graphs in G. Formally, $\operatorname{Graph}(G)=\left\{(V, E) \in \mathbb{M}(G) \times \mathbb{M}(G \times G) \mid E \subseteq V \times V\right.$ and $\left.E=E^{-1}\right\}$

It is a G-space in its own right. A (Borel) factor graph is a measurable and equivariant map $\mathscr{G}: \mathbb{M}(G) \rightarrow \operatorname{Graph}(G)$ such that the vertex set of $\mathscr{G}(\omega)$ is ω.

The average degree of a factor graph

Let μ be an invariant point process and \mathscr{G} a factor graph. The average degree of \mathscr{G} (with respect to μ) is
$\overleftrightarrow{\mu}_{0}(\mathscr{G})=\frac{1}{2} \int_{\mathbb{M}_{g \in U \cap \omega}} \operatorname{deg}_{\mathscr{G}(\omega)}(g) d \mu(\omega)=\frac{1}{2} \mathbb{E}\left[\sum_{g \in U \cap \omega} \operatorname{deg}_{\mathscr{G}(\omega)}(g)\right]$

where $U \subseteq G$ is any set of unit volume.

Cost

The cost of an invariant point process μ is defined by

$$
\operatorname{cost}(\mu)-1=\inf _{\mathscr{G}}\left[\overleftrightarrow{\mu_{0}}(\mathscr{G})-\text { intensity }(\mu)\right]
$$

where the infimum ranges over all connected factor graphs \mathscr{G}
It's not immediately apparent from the above formula, but (cost -1) scales with the choice of Haar measure λ

For lattice shifts, $\operatorname{cost}(G \curvearrowright G / \Gamma)-1=\frac{d(\Gamma)-1}{\operatorname{covol}(\Gamma)}$, where $d(\Gamma)$ denotes the rank of Γ (minimum size of a generating set)

Cost vs. factors

If $\Phi: \mathbb{M} \rightarrow \mathbb{M}$ is a factor map and μ is a point process, then $\operatorname{cost}(\mu) \leq \operatorname{cost}\left(\Phi_{*} \mu\right)$

In particular, the cost is an isomorphism invariant (can show it's an OE invariant in an appropriate sense)

This follows from Gaboriau's induction formula for cost (you can also prove it directly)

Factor of IID cost

I stress that factor graphs should be deterministically defined.
A (perhaps less well-known?) fact is that, as far as computing the cost is concerned, you're allowed to add factor of IID randomness.

Discrete example [Tucker-Drob]

If $\Gamma \curvearrowright^{\alpha}(X, \mu)$ is a free pmp action and $\Gamma \curvearrowright^{\beta}[0,1]^{\Gamma}$ is the Bernoulli shift, then α is weakly equivalent to $\alpha \times \beta$. In particular, $\operatorname{cost}(X, \mu)=\operatorname{cost}\left(X \times[0,1]^{\Gamma}\right)$. That is, the cost of a free action is equal to the cost of its Bernoulli extension.

This should be true for any pmp cber (Abért-M. prove it for point processes).
If μ is any free point process, then it has the same cost as its Bernoulli extension $[0,1]^{\mu}$
Corollary: the Poisson point process has maximal cost (since it's a factor of any Bernoulli extension)

Bernoulli extensions

If (X, \mathscr{R}, μ) is a pmp cber, then it admits a class bijective Bernoulli extension $(\widetilde{X}, \widetilde{\mathscr{R}}, \widetilde{\mu}) \rightarrow(X, \mathscr{R}, \mu)$

Formally:

- \widetilde{X} consists of pairs (x, f) where $x \in X$ and $f:[x]_{\mathscr{R}} \rightarrow[0,1]$ is a labelling of its equivalence class
- We declare $(x, f) \widetilde{\mathscr{R}}\left(x^{\prime}, f^{\prime}\right)$ if $x \mathscr{R} x^{\prime}$ and $f=f^{\prime}$
- For $A \subseteq \widetilde{X}$, we set $\widetilde{\mu}(A)=\int_{X} \eta_{x}(A) d \mu(x)$, where $\eta_{x}=\operatorname{Leb}^{[x]_{\mathcal{A}}}$

Informally

It's X but every point $x \in X$ has IID Unif[0,1] labels on the points of its equivalence class

IID markings of point processes

In general, every class bijective extension $\left(\widetilde{Y}, \widetilde{R}, \widetilde{\mu_{Y}}\right) \rightarrow\left(Y, \mathscr{R}, \mu_{Y}\right)$ of a lacunary section arises as a lacunary section of an extension $G \curvearrowright(\widetilde{X}, \mu) \rightarrow G \curvearrowright(X, \mu)$

In particular, every point process μ has a Bernoulli extension or IID marking, which I will denote by $[0,1]^{\mu}$.

Informal example:\{H, T\}-IID of a point process μ

First sample the process...

Informal example:\{H, T\}-IID of a point process μ

First sample the process...

...then each point independently tosses a coin heads or tails

The Ξ-configuration space action $G \curvearrowright \Xi^{\mathbb{M}}$

Let Ξ denote a complete separable metric space of marks (think of \{Heads, Tails\} or [0,1]).
A Ξ-marked configuration is a discrete subset ω of G where every point is labelled by an element of Ξ. Formally, let
$\Xi^{\mathbb{M}}=\left\{\omega \in \mathbb{M}(G \times \Xi) \mid\right.$ if $(g, \xi) \in \omega$ and $\left(g, \xi^{\prime}\right) \in \omega$ then $\left.\xi=\xi^{\prime}\right\}$
A Ξ-marked point process is a probability measure on $\Xi^{\mathbb{M}}$.
If μ is a point process on G, then its Bernoulli extension is a $[0,1]$-marked point process denoted $[0,1]^{\mu}$ which arises as the Bernoulli extension of the Palm equivalence relation $\left(\mathbb{M}_{0},\left.\mathscr{R}\right|_{M_{0}}, \mu_{0}\right)$

Informally: sample from μ, then at each point put an IID Unif[0,1] number.

$G \times \mathbb{Z}$ has fixed price one

Visualise $G \times \mathbb{Z}$ as an infinite stack of pancakes (or palacsinták, or crêpes, as you prefer)

At least some processes have cost one...

Vertical processes

If μ is any process on G, then $[0,1]^{\Delta_{\Delta, \mu}}$ has cost one

The cost of Bernoulli extensions of vertical processes

Vertical edges

ε-Percolate any horizontal graphing

Fixed price proof outline

- If μ is an invariant point process on $G \times \mathbb{Z}$, then its cost is equal to the cost of its Bernoulli extension $[0,1]^{\mu}$
- Any Bernoulli extension $[0,1]^{\mu}$ weakly factors onto some vertical process ν (and onto its Bernoulli extension $[0,1]^{\nu}$)
- Cost is monotone for (certain) "weak factors"

Thus $\operatorname{cost}(\mu)=\operatorname{cost}\left([0,1]^{\mu}\right) \leq \operatorname{cost}\left([0,1]^{\nu}\right)=1$.

Weak factoring

A point process μ weakly factors onto a process ν if there is a sequence of factor maps $\Phi^{n}: \mathbb{M} \rightarrow \mathbb{M}$ such that $\Phi_{*}^{n}(\mu)$ weakly converges to ν

Inspired by weak containment (can probably make this formal)
A sequence of point processes μ^{n} weakly converges to μ if

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{M}} f(\omega) d \mu_{n}(\omega)=\int_{\mathbb{M}} f(\omega) d \mu(\omega)
$$

for all continuous and bounded functions $f: \mathbb{M} \rightarrow \mathbb{R}_{\geq 0}$ with bounded support

The topology on M...

...is determined by sequences.
A configuration ω^{\prime} is an (R, ε)-wobble of ω if they are bijectively equivalent in $B(0, R)$ by a bijection
$\sigma: \omega^{\prime} \cap B(0, R) \rightarrow \omega \cap B(0, R)$ that moves points by at most ε - that is, $d(x, \sigma(x))<\varepsilon$

A sequence ω_{n} converges to ω if there exists $R_{n} \nearrow \infty$ and $\varepsilon \searrow 0$ such that ω_{n} is an $\left(R_{n}, \varepsilon_{n}\right)$-wobble of ω

Weak factoring onto a vertical process

Recall that μ is some process on $G \times \mathbb{Z}$.
We wish to weakly factor its Bernoulli extension $[0,1]^{\mu}$ onto some vertical process.
We take sparser and sparser subsets of μ and stretch them.

I call this propagation.
Formally, for $\omega \in[0,1]^{\mathrm{M}(G \times \mathbb{Z})}$, define
$\omega^{1 / n}=\left\{g \in \omega \mid \xi_{g}<1 / n\right\}$, and
$\omega+1=\{(g, l+1) \in G \times \mathbb{Z} \mid(g, l) \in \omega\}$, and
$\Phi^{n}(\omega)=\omega^{1 / n} \cup\left(\omega^{1 / n}+1\right) \cup \cdots \cup\left(\omega^{1 / n}+n-1\right)$

The propagation factor map

The propagation factor map

The propagation factor map
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

The propagation factor map

Extensions

- Similar argument covers $G \times \mathbb{R}$
- Modification using Følner sets proves groups containing noncompact amenable normal subgroups have fixed price one
- Can handle $G \times \Lambda$, where Λ is a f.g. group containing an ∞ order element

Question

Do groups of the form $G \times H$ have fixed price one if H contains an ∞ order element generating a discrete subgroup?

Would have interesting ramifications for rank gradient in $\mathrm{SL}_{2}(\mathbb{R}) \times \mathrm{SL}_{2}(\mathbb{R})$.

Replacements...

Replacements...

There is an effort to replace all this point process theory by ultrapowers.
Fin.

